rapd技术原理 rapd技术的原理

本文给大家谈谈rapd技术原理,以及rapd技术的原理对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

DNA分子标记的种类有哪些,各有何特点

主要介绍以下四种:

1 RFLP :该技术由Grodzicker等于1974年创立特定生物类型的基因组DNA经某一种限制性内切酶完全酶解后,会产生分子量不同的同源等位片段,或称限制性等位片段RFLP标记技术的基本原理就是通过电泳的方法分离和检测这些片段凡是可以引起酶解位点变异的突变,如点突变(新产生和去除酶切位点)和一段DNA的重新组织(如插入和缺失造成酶切位点间的长度发生变化)等均可导致限制性等位片段的变化逗族备,从而产生RFLP该技术包括以下基本步骤:DNA提取;用DNA限制性内切酶消化;凝胶电泳分离限制性片段;将这些片段按原来的顺序和位置转移到易操作的滤膜上;用放射性同位素或非放射性物质标记的DNA作探针与膜上的DNA杂交(称 Southern杂交);放射性自显影或酶学检测显示出不同材料对该探针的限制性酶切片段多态性

RFLP标记的主要特点有:(1)遍布于整个基因组,数量几乎是无限的;(2)无表型效应,不受发育阶段及器官特异性限制;(3)共显性,可区分纯合子和杂合子;(4)结果稳定可靠;(5)DNA需要量大,检测技术繁杂,难以用于大规模的育种实践中

2 RAPD :由Williams等于1990年创立其基本原理与PCR技术一致

PCR技术是一种体外快速扩增特异基因或DNA序列的方法,由Mullis等于1985年首创该技术在试管中建立反应体系,经数小时后,就能将极微量的目的基因或某一特定的DNA片段扩增数百万倍其原理与细胞内发生的DNA复制过程相类似,首先是双链DNA分子在邻近沸点的温度下加热时便分离成两条单链DNA分子,然后DNA聚合酶以单链DNA为模板,并利用反应混合物中的四种脱氧核苷三磷酸(dNTPs)合成新生的DNA互补链,以上过程为一个循环,每一个循环的产物可以作为下一个循环的模板,经过20-30个循环后,介于两个引物间的特异DNA片段以几何数得以大量复制

RAPD标记技术就是用一个(有时用两个)随机引物(一般8-10个山毁碱基)非定点地扩增基因组DNA,然后用凝胶电泳分开扩增片段遗传材料的基因组DNA如果在特定引物结合区域发生DNA片段插入缺失或碱基突变,就有可能导致引物结合位点的分布发生相应的变化,导致PCR产物增加缺少或发生分子量变化若PCR产物增加或缺少,则产生RAPD标记

RAPD标记的主要特点有:(1)不需DNA探针,设计引物也无须知道序列信息;(2)显性遗传(极少数共显性),不能鉴别杂合子和纯合子;(3)技术简便,不涉及分子杂交和放射性自显影等技术;(4)DNA样品需要量少,引物价格便宜,成本较低;(5)实验重复性较差,结果可靠性较低

3 AFLP :由Zabeau和Vos于1993年发明AFLP标记是选择性扩增基因组DNA酶切片段所产生的扩增产物的多态性,其实质也是显示限制性内切酶酶切片段的长度多态性,只不过这种多态性是以扩增片段的长度不同被检测出来该技术结合了RFLP的稳定性和PCR技术的简便高效性,同时又能克服RFLP带型少信息量小以及RAPD技术不稳定的缺点其基本技术原理和操作步骤如下:首先用限制性内切酶酶解基因组DNA,形成许多大小不等的随机限制性片段;接着在这些片段的两端连接上特定的寡聚核苷酸接头(Oligo nuleotide adapter);然后根据接头序列设计引物,由于限制性片段太多,全部扩增则产物难以在胶上分开,为此在引物的3端加入1-3个选择性碱基,这样只有那些能与选择性碱基配对的片段才能与引物结合,成为模板被扩增,从而达到对限制性片段进行选择扩增的目的;最后通过聚丙烯酰胺凝胶电泳,将这些特异性的扩增产物分离开来

AFLP标记的主要特点有:(1)由于AFLP分析可以采用的限制性内切酶及选择性碱基种类数目很多,所以该技术所产生的标记数目是无限多的;(2)典型的AFLP分析,每次反应产物的谱带在50-100条之间,所以一次分析可以同时检测到多个座位,且多态性极高;(3)表现共显性,呈典型孟德尔式遗传;(4)分辩率高,结果可靠;(5)目前该技术受专利保护,用于分析的试剂盒昂贵,实验条件要求较高

4 SSR(SSLP) :由Moore等穗昌于1991年创立SSR即微卫星DNA,是一类由几个(多为1-5个)碱基组成的基序(motif)串联重复而成的DNA序列,其长度一般较短,广泛分布于基因组的不同位置,如(CA)n(AT)n(GGC)n等重复不同遗传材料重复次数的可变性,导致了SSR长度的高度变异性,这一变异性正是SSR标记产生的基础尽管微卫星DNA分布于整个基因组的不同位置,但其两端序列多是保守的单拷贝序列,因此可以根据这两端的序列设计一对特异引物,通过PCR技术将其间的核心微卫星DNA序列扩增出来,利用电泳分析技术就可获得其长度多态性,即SSR标记

SSR标记的主要特点有:(1)数量丰富,广泛分布于整个基因组;(2)具有较多的等位性变异;(3)共显性标记,可鉴别出杂合子和纯合子;(4)实验重复性好,结果可靠;(5)由于创建新的标记时需知道重复序列两端的序列信息,因此其开发有一定困难,费用也较高.

利用RAPD可以鉴定两个物种吗?又是怎样鉴定的?

可以

随机扩增多态性 DNA( RAPD) ( random amplified polymorphic DNA )和任意引物 PCR(AP-PCR) ( arbitrary primer PCR )

RAPD ( random amplified polymorphic DNA )是 1990 年美国杜邦公司科学家 J. G. K. Williams 和加利福尼亚生物研究所 J. Welsh 领导的两个小组几乎同时发展起来的一项新技术。 Williams 称之为 RAPD ( random amplified polymorphic DNA ) , Welsh 称之为 AP-PCR ( arbitrary primer PCR )。 RAPD 技术建立在 PCR 技术基础上,它是以任意序列的寡核苷酸单链 ( 通常为 10 个碱基, AP-PCR 则为 20 ~ 30 个碱基 ) 为引物,对所研究的基因组 DNA 进行随机扩增。 RAPD 所用的一系列引物的 DNA 序列各不相同,但对于任一引物,它同基因组 DNA 序列有特定的结合位点。这些特定的结合位点在基因组某些区域内的分布如符合 PCR 扩增的反应条件,即在一定范围内模板 DNA 上有与引物互补的反相重复序列时,就可扩增出此范围的 DNA 片段。在不同清罩铅物种基因组 DNA 中,这种反相重复序列的数目和间隔的长短不同,就可导致这些特定的结合位点分布发生相应的变化,而使 PCR 扩增产物增加、减少或发生分子量的变化。 通过对 PCR 产物的检测和比较,即可识别这些物种基因组 DNA 的多态片段。

与常规 PCR 相比, RAPD 主要有以下特点: ① 无需专门设计 RAPD 扩增反应的引物,也无需预知被研究的生物基因组核苷酸顺序,引物是随机合成或是任意选定的。引物长度一般为 9 ~ 10 个寡核苷酸。 ② 每个 RAPD 反应中,仅加单个引物,通过引物和模板 DNA 链随机配对实现扩增,扩增没有特异性。 ③ 退火温度较低,一般为 36℃ ,这能保证短核苷酸引物与模板的稳定配对,同时也允许了适当的错误配对,以扩大引物在基因组 DNA 中配对的随机性。 ④ 较之常规 PCR , RAPD 反应易于程序化。利用一套随机引物,得到大量 DNA 分子标记,可以借助计算机进行系统分析。

该方法已被广泛用于遗传指纹作图、基因定位、系统进化以及动闷差植物、微生物物种及中药材的鉴定等各个领域。在生药鉴定答好方面,该方法在人参及其伪品、甘草、黄连、冬虫夏草及其伪品、贝母等药材的鉴定中有应用。

RAPD引物在DNA双链上,只与一条连结合扩增,还是2条连都可扩增?

RAPD,即随机扩或纯增多态性DNA技术:既然是随机引物,那么他在整个基因组中都有结合位点,当然结合也是随机的,只要能够互补上去腔卖都能够扩增出条带,经电泳检测变可以检出

不懂可以追问!衫圆咐!!!

纯手打,望采纳!!!谢谢

求解生物名词解释

dsDNA:double-stranded DNA, 双链DNA。指DNA分子是由两条链组成的,这两条链通过碱基配对原则结合在一起。 比如,大多数生物颤察启的细胞核内的DNA就是dsDNA。

ssDNA:single-stranded DNA, 单链DNA。两条链解开以后即成为单链DNA。

dNTP:三磷酸脱氧核糖没哗核苷酸,是dATP, dGTP, dTTP, dCTP的统称。是含有高能磷酸键的脱氧核糖核苷酸,能直接用于合成DNA。

LB培养基茄如:LB一般被解释为Luria-Bertani培养基,然而根据其发明人贝尔塔尼(Giuseppe Bertani)的说法,这个名字来源於英语的lysogeny broth,即溶菌肉汤。是最常用的经典的培养工程菌(大肠杆菌)的培养基。

RAPD:随机扩增多态性DNA标记,其基本原理与PCR技术一致。 RAPD 技术是建立在PCR (Polymerase Chain Reaction)基础之上的一种可对整个未知序列的基因组进行多态性分析的分子技术。

DNA本身是带负电的,这是因为其上的磷酸基团本身是带负电的。

应该说蛋白质在高于等电点的PH溶液中带负电荷

微波辐射诱变是什么原理

植物诱变以及RAPD分析实验设计———

小麦的化学诱变及分析

一. 实验原理:

诱变育种是人为的措施诱导植物遗传基因产生变异,然后在产生变异的植株中按照需要选育出新的优良品种。诱变育种常用的有物理因素册梁世和化学因素,物理因素如各种射线、微波或激光等处理诱变材料,习惯上称之为辐射育种;化学因素是运用能导至遗传物质改变的一些化学药物——诱变剂处理诱变材料促使变异,常称之为化学诱变。

化学诱变剂种类现已不少,但常见使用效果较好的有:甲基磺酸乙脂(EMS,又称乙基甲烷磺酸盐)、乙烯亚胺(EN)、硫酸二乙脂(DES)、亚硝基尿烷(NEU)、亚硝基甲基尿烷(NMU)、亚硝基乙基脲(NEH)。以及从植物中提取的某些生物碱类(如长春花碱、秋渣卖水仙碱、石蒜碱等)。

诱变材料:在农业育种上,诱变剂常用来处理种子、营养体、花粉等。以选用种子为诱变材料最多。

诱变剂的浓度以多高为合适,还需要更多的实验次数才能确定。开始实验时应设立不同浓度的很多档次,以便以后总结优选配方。处理时间一一般约1小时至两昼夜,应掌握温度高则浓度偏低,浓度高则处理时间缩短的原则进行。诱变剂处理时的温度以20——25度为适。处理时间过长、温度过高、诱变剂过浓会造成大量死苗。

诱变剂大多具有致癌作用,操作时尽量少接触皮肤,更不能吸人体内。

RAPD是随机扩增多态性DNA(Random Amplification Polymorphic DNA)的英文缩写,RAPD是1990年由Willianms发明的,是新近发展起来一种分子生物学方法,RAPD是建立在PCR技术之上的一种分子标记方法,它是以一系列不同的随机排列的寡聚核酸单链为引物,对于所研究的基因组DNA 进行扩增,扩增产物通过聚丙烯酰氨凝胶或者琼脂糖凝胶电泳分析,经EB染色来检测扩增产物的多态性,RAPD 所使用的引物各不相同,对于任一特定的引物,它同基因组DNA 序列有特定的结合位点,这些特定的结合位点在基因组某些区域内的分布符合PCR反应的条件,机随机引物在模板的两条链上有互补的位置,且引物的3‘-端相距在一定的长度范围之内,就可以扩增出来DNA片段,如果基因组在这些区域发生DNA的片段的插入或者缺失,或者碱基突变就能够导致这些特定结合位点分布发生变化,而使PCR产物增加或者减少,发生分子量的变化,通过对于PCR产物的检测分析即可以测出基因组在这些区域的多态性。

RAPD技术继承了PCR技术的优点,所以RAPD技术可以在对于所研究的物种没有任何分子生物学基础的情况下,对其进行DNA的多态性的分析,同RFLP,DNA 指纹图谱法等其它DNA 多态性技术相比,RAPD 具有检测效率高,样品用量少,灵敏度高等特点和优势,RAPD已经广泛地应用于农作物品种以及品系的鉴州肢定品种和品系的遗传关系的确定,基因的定位和分离 ,够建基因图谱以及作物抗性育种等方面。

二. 实验目的:

1.学习基因组的诱变方法;

2.掌握RAPD以及PCR检测方法。

三. 实验材料以及试剂:

1实验材料:

小麦种子

2 . 试剂

诱变剂:

4种DNTS ,随机引物,TAQ酶,

四. 实验步骤

(一)化学诱变(材料为每1组)

将饱满的小麦种子选取500粒,250 进行EMS处理,250直接进行培养。

具体为:1. 配置浓度为0.1%-0.3%的EMS

2. 将小麦种子用EMS处理两昼夜,处理过程当中温度保持在室温,处理时间不要过长,保证种子没有出现诱变致死。可以将种子浸泡在水中,在温箱中培育,如果诱变的种子出芽率低,进行再次诱变。如果诱变成功,将出芽的种子继续培养。同时,培育正常的种子.

(二)诱变后的种子和为诱变的种子培育到叶片生长到约8厘米左右可以进行下一步实验.

(三)植物总DNA的提取

1.样品制备:

取1克新鲜的小麦叶片(绿色的叶片最佳),加液氮研磨样品至粉末状

2.样品移入50ml的离心管,加入20---25ml已预热到65度的提取液,充分混匀,65度水浴20---30分。

3.将材料冷却到室温,加入16ml氯仿:异戊醇均匀混合,直至上层为绿色。

4.6000离心15分钟,加入预冷的无水乙醇,将离心后的样品上清夜缓慢许旋转加入,静置。DNA浮出。

5.用预冷-20的70%酒精洗涤DNA多次。将DNA勾出,吸出多余酒精,晾干。

什么是分子标记

分子标记是继形态标记、细胞标记和生化巧扮裂标记之后发展起来的一种较为理想的遗传标记形式,它以蛋白质、核酸分子的突变为基础,检测生物遗传结构与其变异。分子标记技术从本质上讲,都是以检测生物个体在基因或基因型上所产生的变异来反映生物个体之间的差异。每一种分子标记都有其自身的特点和特定的应用范围,但就一般意义而言,DNA 分子标记与形态标记和生化标记等相比,具有许多独特的优点: ①不受组织类别、发育阶段等影响。植株的任何组织在任何发育时期均可用于分析。②不受环境影响。因为环境只影响基因表达(转录与翻译) ,而不改变基因结构即DNA 的核苷酸序列。③标记数量多,遍及整个基因组。④多态性高,自然存在许多等位变异。⑤有许多标记表现为共显性,能够鉴别纯合基因型和杂合基因型, 提供完整的遗传信息。⑥DNA 分子标记技术简单、快速、易于自动化。⑦提取的DNA 样品,在适宜条件下可长期保存,这对于进行追溯性或仲裁性鉴定非常有利。因此,DNA 分子标记可以弥补和克服在形态学鉴定及同工酶、蛋白电泳鉴定中的许多缺陷和难题,因而在品种鉴定方面展示了广阔的应用前景。

1. 1  第1 代分子标记

1.1. 1  RFLP 标记技术。

     1980 年Botesin提出的限制性片段长度多态性(Restriction fragment length polymorphisms ,RFLP) 可以作为遗传标记,开创了直接应用DNA 多态性的新阶段,是最早应用的分子标记技术 。RFLP 是检测DNA 在限制性内切酶酶切后形成的特定DNA 片段的大小,反映DNA 分子上不同酶切位点的分布情况,因此DNA 序列上的微小变化,甚至1 个核苷酸的变化,也能引起限制性内切酶切点的丢失或产生, 导致酶切片段长度的变化。

优点:RFLP 标记的等位基因具有共显性的特点,结果稳定可靠,重复性好,特别适应于构建遗传连锁图。

缺点:在进行RFLP 分析时,需要该位点的DNA片段做探针,用放射性同位素及核酸杂交技术,既不安全又不易自动化。另外,RFLP 对DNA 多态性检出的灵敏度不高,RFLP 连锁图上还有很多大的空间区。

1.1. 2  RAPD 标记技术。

     为了克服RFLP 技术上的缺点,Williams等于1990年建立了随机扩增多态DNA Randomamplified polymorphic DNA ,RAPD) 技术,由于其独特的检测DNA 多态性的方式使得RAPD 技术很快 渗透于基因研究的各个领域。RAPD 是建立于PCR 基础之上的分子标记技术,基本原理是利用一个随机引物(8~10 个碱基) 通过PCR 反应非定点地扩增DNA 片段,然后用凝胶电泳分离扩增片段来进行DNA 多态性研究。对任一特定引物而言,它在基因组DNA 序列上有其特定的结合位点,一旦基因组在这些区域发生DNA 片段插入、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物的数量和大小发生改变,表现出多态性。

优点:与RFLP 相比,RAPD 技术简单,检测速度快,DNA 用量少,实验设备简单,不需DNA 探针,设计引物也不需要预先克隆标记或进行序列分析,不依赖于种属特异性和基因组的结构,合成一套引物可以用于不同生物基因组分析,用一个引物就可扩增出许多片段,而且不需要同位素,安全性好。

缺点:当然,RAPD 技术受许多因素影响,实验的稳定性和重复性差,首先是显性遗传,不能识别杂合子位点,这使得遗传分析相对复杂 ,在基因定位、作连锁遗传图时,会因显性遮盖作用而使计算位点间遗传距离的准确性属特异性和基因组的结构,合成一套引物可缺孝以用于不同生物基因组分析,用一个引物就可扩增出许多片段,而且不需要同位素,安全性好。当然,RAPD 技术受许多因素影响,实验的稳定性和重复性差,首先是显性遗传,不能识别杂合子位点,这使得遗传分析相对复杂 ,在基因定位、作连锁遗传图时,会因显性遮盖作用而使计算位点间遗传孝闭距离的准确性下降;其次,RAPD 对反应条件相当敏感,包括模板浓度、Mg2 +浓度,所以实验的重复性差 。

1. 3  AFLP 标记技术

    扩增片段长度多态技术(AFLP) ,又名限制片段选择扩增技术(Selective restriction fragment amplifi2cation ,SRFA) ,于1993 年由荷兰KEYGENE 公司的Zabean 和Vos 等发明,并已申请专利。AFLP 是近年来迅速发展起来的一种分子标记技术,它将基因组DNA 用成对的限制性内切酶双酶切后产生的片段用接头(与酶切位点互补) 连接起来,并通过5′端与接头互补的半特异性引物扩增得到大量DNA 片段,从而形成指纹图谱的分子标记技术。AFLP 指纹呈孟德尔式共显性和显隐性遗传。

优点:它兼具RAPD 与RFLP 的优点,有较高的稳定性,用少量的选择性引物能在较短时间内检测到大量位点,并且每对引物所检测到的多个位点都或多或少地随机分布在多条染色体上,各染色体上AFLP 标记的数目与染色体长度呈正相关( r = 0. 501) ,而一对引物获得的标记涉及的染色体数与标记数呈正相关( r = 0. 826) 。因此,通过少量效率高的引物组合,可获得覆盖整个基因组的AFLP 标记 。目前,AFLP 作为一种高效的指纹技术,已在遗传育种研究中发挥它的优势。

缺点:不过也有研究认为,AFLP 对基因组纯度和反应条件要求较高,另外用于遗传作图时,少数的标记与图谱紧密度有出入。此外, 在RAPD 和RFLP 技术基础上建立了SCAR(Sequence characterize damplified regions ,序列特异性扩增区域) 、CAPS(Cleaved ampli2fied polymorphic sequence ,酶切扩增多态序列) 和DAF(DNA am2plified fingerprints ,DNA 扩增指纹) 等标记技术 。这些技术的出现,进一步丰富、完善了第1 代分子标记技术,增加了人们对DNA 多态性的研究手段。

1. 2  第2 代分子标记

2. 1  SSR 标记技术。

     在真核生物基因组中存在许多非编码的重复序列,如重复单位长度在15~65 个核苷酸的小卫星DNA(Minisatellite DNA) ,重复单位长度在2~6 个核苷酸的微卫星DNA (Microsatellite DNA) 。小卫星和微卫星DNA 分布于整个基因组的不同位点。由于重复单位的大小和序列不同以拷贝数不同,从而构成丰富的长度多态性。Moore 等于1991 年结合PCR 技术创立了SSR (Simple sequence repeat ,简单重复序列) 标记技术。SSR 也称微卫星DNA ,是一类由几个(多为1~5 个) 碱基组成的基序串联重复而成的DNA 序列,其中最常见的是双核苷酸重复,即(CA) n和(TG) n ,每个微卫星DNA 的核心序列结构相同,重复单位数目10~60 个,其高度多态性主要来源于串联数目的不同。不同遗传材料重复次数不同,导致了SSR 长度的高度变异性,这一变异性正是SSR 标记产生的基础。SSR 标记的基本原理:根据微卫星重复序列两端的特定短序列设计引物,通过PCR 反应扩增微卫星片段。由于核心序列重复数目不同,因而扩增出不同长度的PCR 产物,这是检测DNA 多态性的一种有效方法。微卫星序列在群体中通常具有很高的多态性,而且一般为共显性,因此是一类很好的分子标记。目前已利用微卫星标记构建了人类、小鼠、大鼠、水稻、小麦、玉米等物种的染色体遗传图谱。

优点:这些微卫星标记已被广泛应用于基因定位及克隆、疾病诊断、亲缘分析或品种鉴定、农作物育种、进化研究等领域。此外,SSR 标记不仅能够鉴定纯合体和杂合体,而且结果更加可靠,方法简单,省时省力。

2. 2  ISSR 标记技术。

     ISSR 即内部简单重复序列,是一种新兴的分子标记技术。1994 年Zietkiewicz 等对SSR 技术进行了发展,建立了加锚微卫星寡核苷酸(Anchored microsatellite oligo nucleotides) 技术 。他们用加锚定的微卫星寡核苷酸作引物,即在SSR 的5′端或3′端加上2~ 4 个随机选择的核苷酸,这可引起特定位点退火,从而导致与锚定引物互补的间隔不太大的重复序列间的基因组节段进行PCR 扩增。这类标记又被称为ISSR ( Inter2simple

sequence repeat ) 、ASSR(Anchored simple sequence repeats) 或AMP2PCR 。在所用的两翼引物中,可以一个是ASSR 引物,另一个是随机引物。如果一个是5′端加锚的ASSR 引物,另一个是随机引物,则被称为RAMP 技术[19] 。用于ISSR2PCR 扩增的引物通常为16~18 个碱基序列,由1~4 个碱基组成的串联重复和几个非重复的锚定碱基组成,从而保证了引物与基因组DNA 中SSR 的5′或3′末端结合,通过PCR 反应扩增SSR 之间的DNA 片段。

优点:SSR 在真核生物中的分布是非常普遍的,并且进化变异速度非常快,因而锚定引物的ISSR2PCR 可以检测基因组许多位点的差异。与SSR2PCR 相比,用于ISSR2PCR 的引物不需要预先的DNA 测序,也正因如此,有些ISSR 引物可能在特定基因组DNA 中没有配对区域而无扩增产物,通常为显性标记,呈孟德尔式遗传,且具有很好的稳定性和多态性。

1. 3  第3 代分子标记

3. 1  SNP 标记技术。

     单核苷酸多态性(Single nucleotide polymorphism ,SNP) 被称为第3 代DNA 分子标记,是指同一位点的不同等位基因之间个别核苷酸的差异,这种差异包括单个碱基的缺失或插入,更常见的是单个核苷酸的替换,且常发生在嘌呤碱基(A 与G) 和嘧啶碱基(C 与T) 之间。SNP 标记可帮助区分两个个体遗传物质的差异,被认为是应用前景最好的遗传标记。目前,已有2 000 多个标记定位于人类染色体上,在拟南芥上也已发展出236 个SNP 标记。在这些SNP 标记中大约有30 %包含限制性位点的多态性。

优点:检测SNP 的最佳方法是DNA 芯片技术,最新报道的微芯片电泳(Microchip electrophoresis) ,可以高速度地检测临床样品的SNP ,它比毛细管电泳和板电泳的速度可分别提高10 和50倍 。SNP 与第1 代的RFLP 及第2 代的SSR 标记的不同有2 个方面:其一,SNP 不再以DNA 片段的长度变化作为检测手段,而直接以序列变异作为标记;其二,SNP 标记分析完全摒弃了经典的凝胶电泳,代之以最新的DNA 芯片技术。

3. 2  EST 标记技术。

     表达序列标签( Expressed sequence Tag , EST)是美国国立卫生研究院(National Institutes of Health ,NIH) 的生物学家Venter 于1991 年提出的。随着人类基因组计划的开展,EST 技术首先被广泛应用于寻找人类新基因,绘制人类基因组图谱,识别基因组序列编码区等研究领域,之后又被广泛应用于植物基因组研究。EST 是指在来源于不同组织的cDNA 文库中随机挑选克隆、测序,得到部分cDNA 序列,一个EST对应于某一种mRNA 的cDNA 克隆的一段序列,长度一般为150~500 bp ,只含有基因编码区域。

优点:EST可代表生物体某种组织某一时间的一个表达基因,所以被称之为“表达序列标鉴”;而EST的数目则显示出其代表的基因表达的拷贝数,一个基因的表达次数越多,其相应的cDNA 克隆越多,所以通过对cDNA 克隆的测序分析可以了解基因的表达丰度。目前构建cDNA 文库一般都使用试剂盒,方法成熟,而且飞速发展的DNA 测序技术,也使得进一步降低大规模DNA 序列测定成本成为可能 。

rapd技术原理的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于rapd技术的原理、rapd技术原理的信息别忘了在本站进行查找喔。