电声测试仪的原理 电声测试仪的主要用途

本文给大家谈谈电声测试仪的原理,以及电声测试仪的主要用途对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

请问静电测试仪的测试原理是什么?要详细点哦。

做为测量对象的静电,可认为有两种类型。一种是工厂某地已经产生的;另一种是在实验室的基础研究中使之产生的。前者需要正确地掌握带电状况,考虑此时所具有的诸条件,找出排除故障的适当方法。后者要求能准确地控制实验条件,得到有再现性的实验结果。为此,必须充分理解测量的方法,进而预先研究分析产生静电的因素,也是完全必要的. 1.1感应起电 感应起电通常是对导体来说的。这里介绍的是电介质在静电场中由极化而使其带电的方法,也把它称为感应起电。在电场中,电介发生极化,极化后的电介质,其电场将周围介质中的某种自由电荷吸向自身和电介质上与之符号相反的束缚电荷中和。外电场撤走后,电介质上的两种电荷已无法恢复中性,因而带有一定量的电荷,这就是感应起电. 1.2放电衰减 物体带电后,内部电荷的逸散符合指数衰减规律。 Q=Q0e-t/ε0εrρr (1) 将电量衰减的时间常数τ=ε0εrρr代入(1)式得:Q=Q0e-t/τ (2) 电量衰减时间常数τ可用静电衰减测量仪来测量,而在实际的纤维和织物的静电测试中,人们直接取电量衰减至原测试值的一半(Q=1/2Q0)时所用的时间,也就是静电半衰期t1/2表征静电荷的逸散能力。它是衡量纤维消除静电荷性能的一个重要指示,将式(2)加以变换得 τ=t/lnQ0/Q (3) 以Q=Q0/2代入式(3)得到静电半衰期t1/2与电量衰减时间常数τ之间的关系: t1/2= 1/1.44·τ=0.69τ 2.试验方法 使被测试样起电的方法有很多种。在试验当中,需要一种能够提供稳定的并能够穿透一定空间(空气)的电源,以及在检测中受环境的影响比较小的条件下进行。这种办法就是电晕放电和比较电极法检测。. 2.1电晕放电 需要说明的是场带电和扩散带电需要高浓度的单极性离子。由于它们相互排斥和高的迁移率,这种离子寿命很短。因此要用这些带电方法,必须要连续不断地产生离子。放射性的放电、紫外线照射、火焰及电晕放电能在空气中产生离子。只有最后一种方法——电晕放电能产生高浓度的单极离子以使试样保持稳定带电状态。 为产生电晕放电,必须建立一个不均匀的电场。像针与平板之间、空气和其它通常是良好的绝缘体,但在电场强度足够高的区域中空气受到电离并成为可导电的。根据场的几何形状不同,这种电荷可能是电弧放电或电晕放电。 在电晕区域,电子被加速到相当高的速度,可以在撞击一个空气分子时把一个电子撞出来,于是产生一个正离子和一个电子。在电晕区域内是以自维持雪崩的形式发生这个过程,从而在导线周围产生了浓密的自由电子云和正离子云,这叫电晕放电。. 2.2非接触式的测量方法 静电电位的测量分为接触式和感应式两种。 由于物体所带的静电大都有静电压高,而电流小,且一次性损耗后不易再补上的特点。所以接触性仪表大都采用了光反射法,不仅体积较大,量度不精确,使用范围也受到了限制。 直接感应仪表测量法是用电容分压原理。它的精度取决于电压表固有电容和测试板对地的分布电容,且感应电荷会通过表内电阻而逐步泄漏。因此,电压表上读出的电压将随时间逐渐衰减。 比较法是一种非接触的静电测试方法。它利用试样在旋转时出现的带电荷与不带电荷的交替变换,给探头一个交变信号 3.峰值、半衰期的测量 3.1放电电压和电晕放电时间 如果放电针是正极性的,电子将迅速朝放电针运动,同时正离子将从放电针被推向试样形成一个单极性的离子风,在连续放电30秒钟后,试样上所获得的电压就是被测织物所带的静电峰值电压(试验表明只有使用功率足够的高压变压器,才能在30秒时间内提供稳定1万伏放电电压)。 前面已经阐明,仪器的高压尖端放电情况处于电晕放电阶段,空气中原始电离情况对仪器工作状况有一定的影响。在电晕放电阶段,要求外电场有一定程度,小于一定值,放电空间的这种电子增值过程不可能维持。我们在对各种试样(棉、毛、丝、麻、涤纶、锦纶及人造棉)进行实例的情况下,0.5kN/mm场强比较合适,如16mm放电距离,要达到0.5kN/mm场强,加于放电头上的电压达到8000V即可。而选20mm放电距离,要达到上述同样的场强,就须加 10 000伏电压。 电介质在静电场中任何形式极化过程建立具有一定极化强度和稳定情况都是需要一定驰豫时间的。由于装置上的电场是周期性地加给试样的,因此,延长了极化终了时达到放电状态所需要的时间,再加上高压装置中滤波电容器的充电时间,因此必须有足够的放电时间使试样带电稳定。 一般来说,放电电场越强,建立稳定静电测试值所需的时间越短(离子云浓度大)。静电效应显著的蛋白质纤维和合成纤维比静电效应小的纤维素纤维,建立稳定静电测试值所需的时间短些。 我们对不同品种的纤维、纱线、织物进行了实测。其结果是:为满足不同的试样要求,将测定的放电时间选定为30秒是可行的。. 3.2半值时间测量 所谓半值时间是带电体电电位衰减为初始值Vo的一半所需时间(见图3),用符号t1/2表示。由式u=Voet/τ并代入条件t= 1/2t,u= Vo/2 则有: Vo/2=Voet1/2/τ (5) 整理后得: t1/2=τln2 (6) 根据规定〔1〕,时间常数的5倍时间称为松驰时间,即: ts=5τ (7) 可以算出,经过时间t后,电压衰减为原数值的0.67%,可以认为电压已经消失。 其测试方法是:旋转试样盘的上方除了放电针外,还有一个测试探头(距离试样上方15mm),可以一边施加高压,一边观察试样上感应电压的情况。当高压放电针结束放电后,立即记录下此时电压,即峰值电压Vo(见图3)。可在示波器上显示出一组脉冲电压波形。而自动记录仪进入的信号,因经整流滤波,记下的是包络线。从图形中可以量出半值时间t1/2的大小,再应用式(6)和(7)求出τ和t,也可以利用数字显示仪表在半峰值电压时自动记录下此时电位和半值时间。这种仪器自动化程度高,操作更加简便一些。 还有一种仪器是在试样旋转园盘的上方只有一个放电探头,待放完电后把放电探头移走,再移入一个测试探头。这种仪器具有体积小,封闭性好的特点。但它不能反映图(3)中曲线的上升部份对应测量的开始阶段(即每当试样经过电晕针下面时,由于电晕针对试样不断放电,使电压逐渐上升,直到某个饱和值Vo)。由于被测试样的峰值电压开始衰减成指数曲线形式,而特别是换测量探头的时间又不可能在瞬间完成,这个时间差使峰值电压的测量大大降低了,是不够准确的。其测试的图形开始阶段也是不连续的。因此半值时间的测量也受到影响 5更换探头测试仪图器的半值时间 4.试验环境温湿度对测量的影响 空气相对湿度及纤维、纱线、织物本身的回潮率,对静电值影响很大,必须加以控制。这是因为一方面试验环境的温湿度影响电晕放电的强弱,另一方面纤维的导电性能吸湿回潮后影响纤维的静电性能,对亲水性纤维及其制成品必须要注意。 试样 相对湿度 33% 64% 70% 棉 1700 790 250 人造棉 900 390 120 麻 1500 240 120 丝 1100 700 500 毛 4300 3000 2900 涤纶 2900 2600 2100 锦纶 3700 3400 3000 注:测试温度19℃,放电电压8000伏 试验时的温湿度问题。对合纤疏水性纤维来说影响要小一些。 以上试验表明:环境相对湿度高时,带电材料周围的离子化比较容易,电荷向外界的放失速度变快。同时,相对温湿度高,使纤维的吸湿率增高,导致纤维本身的比电阻降底。羊毛在50%R.H以下,棉花在30%R.H以下,有可能发生有危害性的静电效应。 在相对湿度相同的条件下,一般来说静电值随温度的下降略有增加,这是因为温度的降低,分子的热骚动有所减弱之故。目前的研究主要是在室温附近。在常温条件下,这种减弱对测试值的影响远不及湿度影响明显,可以不做重点因素考虑。

电感测试仪原理?

电感测量仪具有简单实用的分选功能,此功能的参数设置简便易行,结果显示直观,可以满足人们使用单位的进货检验和电感生产线的快速分选测量要求。该电感测试仪采用桥式电路结构,标准电感器和被试电感器作为桥式电路的两臂。当进行电感器电感值测量时,测试电压同时施加在标准电感器和被试电感器上,处理器通过传感器同采集流过两者的电流信号并进行处理后得被试电感器的电感值。

由于采用标准电感器、被试电感器同步采样技术,可不受电源电压波动的影响;加之测量过程是全自动进行的,避免了手动操作引起的误差,因此具有稳定性好、重复性好,准确可靠的特点。

声导抗测试的原理是什么?

常用的声导抗测试仪包含:1.一个插入耳道的测试探头(probe tip)探头尖端有一个柔软且有弹性的耳塞。探头内有四条管子:(1)探测音发生器和输送探测音至外耳道的扬声器;(2)探测耳道中声能的传声器和监测—记录系统;(3)改变外耳道气压的气泵和探测压力改变的压力计;(4)同侧声反射测试时给输送刺激声至外耳道的扬声器;及处理器和显示器。

将 85dB SPL 的 226Hz 的探测音发送到 2ml 密闭腔中,检测腔内声级的指针指于零,以这作为计量密闭腔容积大小的基准,当指针偏向大于 0 时,表明少于 2ml 空气,指针偏向小于 0 时,表明大于 2ml 空气。根据这一原理,将密闭腔中的声压级的增减幅度用于判断探测音在“外耳道中的空气和中耳系统中”的声阻抗/导纳。在用 226Hz 探测音时(可对质量声抗/声纳忽略不计),可直接用若干 ml 的空气的声阻抗/导纳表示。

探测信号经扬声器进入耳道,同时同侧声反射扬声器也向中耳发出刺激信号,气泵可改变压力并显示压力值,当耳道压力发生变化时,微型麦克风可以检测耳道中探测音的声压级,输出电压信号,处理器根据麦克风输出的声压计算声导纳。

声波检测的原理

(1)检测原理

声波检测的基本原理与地震勘探的原理十分类似,是以研究弹性波在岩土介质中的传播特征为基础。声波在不同类型的介质中具有不同的传播特征。当岩土介质的成分、结构和密度等因素发生变化时,声波的传播速度、能量衰减及频谱成分等都将发生相应的变化,在弹性性质不同的介质分界面上还会发生波的反射和折射。因此,用声波仪器探测声波在岩土介质中的传播速度、振幅及频谱特征等,便可推断被测岩土介质的结构和致密完整程度。

例如,当对某岩体(或硐)进行声波探测时,只要将发射点和接收点分别置于该岩体或硐的不同地段,根据发射点和接收点的距离和声波在岩体中的传播时间,即可算出被测岩体的波速v。也可根据声波振幅的变化和对声波信号的频谱分析,还可了解岩体对声波能量的吸收特性等,从而对岩体作出评价。声波检测过程如图5.31所示。

图5.31声波检测过程示意图

(2)检测仪器

声波仪主要由发射系统和接收系统两部分组成。发射系统包括发射机和发射换能器。接收系统由接收机、接收换能器和用于数据记录和处理用的微机组成。

发射机是一种声源讯号发生器。其主要部件为振荡器,由它产生一定频率的电脉冲,经放大后由发射换能器转换成声波,并向岩体辐射。

电声换能器是一种实现声能和电能相互转换的装置。其主要元件是压电晶体,一种天然的(或人工制造的)晶体或陶瓷。压电晶体具有独特的压电效应,将一定频率的电脉冲加到发射换能器的压电晶片时,晶片就会在其法向或径向产生机械振动,从而产生声波,并向介质中传播。晶片的机械振动与电脉冲是可逆的。接收换能器接收岩体中传来的声波,使压电晶体发生振动,则在其表面产生一定频率的电脉冲,并送到接收机。

根据测试对象和工作方式的不同,电声换能器也有多种型号和样式,如喇叭式、增压式、弯曲型等,还有测井换能器和横波换能器等。

接收机是将接收换能器接收到的电脉冲进行放大,并将声波波形显示在荧光屏上,通过调整游标电位器,可在数码显示器上显示波至时间。若将接收机与微机连接,则可对声波讯号进行数字处理,如频谱分析、滤波、初至切除、计算功率谱等,并可通过打印机输出原始记录和成果图件。

声强测量的原理

包括测量方法和测量仪器。基本的声学测量声压测量、声强测量、声质点速度测量、频率测量、加速度测量、传声器和水听器绝对校准、通信系统检测、语言可懂度测试、听力测量、声波分析、电声仪器性能评价、房间音质测量等。近代声学测量的仪器设备有各种声级计、电容传声器和电子放大记录设备、模拟和数字频谱分析仪、声强计、加速度计、驻波管等,以及消声室、混响室、隔声室、高声强实验室、消声水池和混响水池。

历史

17世纪初就有人尝试测量空气中的声速。直到18世纪声学测量只是在测量声速方面做了一些工作,19世纪中虽在空气中声速的测定、调音频率的确定、质点速度的测定和音色的观察等方面取得了进展,但还属起步阶段,真正的声学测量工作是在20世纪初由于电学线路和无线电技术的发展而开始发展的。先发明了用瑞利盘测定平面行波中的质点速度,从而建立了声压的测量,用光干涉法测量声强等一些测量方法。后又发明了热致发声器等标准声源,特别是电容传声器和互易校准的发明,室内自由声场──消声室的建立,以及各种声学测试仪器如声级计、声分析仪等的问世,使声学测量进入了新阶段,到60年代,已发展得比较完善,基本上解决了各声学量的测量,建立了空气中和水中的声压基准及有关的标准测量方法。近年来声强和声功率的测量有了新发展,声学测量正在实现自动化,带微处理机的声学测量仪器也已出现,这表明声学测量已迈进现代声学的行列。

声学中的基本量

在声学中,或描述一声源及其产生的声场的特性,或在某些声学现象、效应中起主导作用的一些量,为声学中的基本量。表1所列为这些基本量及其相互关系。在前四个量中,声压是最容易测量的,而且可以量得很准确,另三个量又能由声压导出,因此,过去一直误认为只有声压才是声学中的基本量。实际上,当声场不是自由场时,其他三个量与声压间不存在一个简单的关系,另外有不少声学效应(例如超声效应)并不直接只与声压有关,而与声能量或声强等有关。对某一声学问题选用哪个基本量来描述应视具体情况而定,因此所有这些声学量在声学测量中都是很重要的。

声压级

在实际生活中,声音强度的变化范围很大,从人耳刚能听到的声音(约 20μPa)至震耳的噪声 (约几百帕)可差107倍。而且人对声音强弱的感觉并不与声压成比例,而是与其对数值成比例。为了便于表示起见,使用声压级Lp这个量,它是某声压值p与基准声压p0之比的常用对数乘以20,其单位为分贝(dB),即 Lp=20lg(p/p0), 基准声压在空气中为 20μPa,水中为1μPa。对于一个声压值,不同的基准值给出的声压级是不同的,故在讲声压级的同时一定要说明所用的基准声压值。人们实际感觉到的或要处理的声音大部分不是纯音,而是具有频谱特性的噪声,对于这类声则常用某一有限频带中声能的有效声压级来表示,称为频带声压级。最常用的频带宽度有倍频程和倍频程带宽。由多声源组成的、能量分布随时间变化的如环境、交通等这类噪声,则用累积百分声级和等效声级来表示,累积百分声级 是在规定时间T内有N%时间的声级所超过的那个声级,等效声级是某规定时间T内声级的能量平均值。常用的声级还有平均声级、评价声级、暴露声级等等。总之对某种类型的声和噪声,应使用能表征其特性的某种声级来表示。声强、声功率以及其他声学量用级表示时,与声压级相同。表2所列为常用声级的名称、符号和单位。

电导测试仪的技术原理是怎样的?

1.电导技术被全世界公认为判定蓄电池状态和控制蓄电池充电的新标准。电导是一个测量单位,代表蓄电池极板上能够进行化学反应的可用面积,能够提供电能的有效面积。实验室研究和现场研究证明电导能够可靠地代表蓄电池的健康状态以及与蓄电池容量之间的关系,能够被用于探测会造成蓄电池失效的单元格缺陷、短路、自然老化和开路。电导技术全球公认为判定蓄电池状态和控制蓄电池充电的新标准。

2.技术原理:经过国际上大量的实验数据表明,电导值与电池容量呈很好的线形关系。对于同一种电池,随着使用后电池容量的下降,该电池的电导值也会下降,这样的一个线形关系正是电导仪能够正确判定电池健康情况的基础。正因为如此,国际电气和电子工程师协会(IEEE)正式把电导测试法作为检测铅酸蓄电池的检测标准之一,在IEEE标准1118-1996的第15页,明确指出:电池电导的测量是将已知频率和振幅的交流电压加到电池的两端,然后测量所产生的电流。交流电导值就是与交流电压同相的交流电流分量与交流电压的比值。明显的电导值的变化(下降大于20%)就意味着电池性能的变化。

3.工作原理:电池随着使用时间的增加,会逐渐老化,其老化的主要原因正是电池极表面发生硫化、腐蚀,活性材料脱落,无法再进行有效的化学反应,这是绝大部分电池无法继续使用的主要原因。电导仪的工作原理就是通过测量极板表面的情况,判定其化学反应能力,并通过极板的变化来推断电池容量的变化,从而判定电池的健康状况。电导仪所进行的测试工作就是以电池目前测得的实际电导值与电池完好时的标准电导值进行比较,如果差异大到一定程度,就可以判定该电池需要更换了。实践证明,电导仪的测试结果与用1/2的CCA值放电的测试结果是吻合的,充分说明了电导仪测试的科学性、准确性。

电声测试仪的原理的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于电声测试仪的主要用途、电声测试仪的原理的信息别忘了在本站进行查找喔。